What Does
Scalable Resilience
Look Like

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science
University of lllinois at Urbana Champaign

ILLINOTIS PARALLEL]

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB m

DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

™

. I}l [

Outline

SDCs are all the rage, but:
Failstop failures are not going away

We need schemes to handle them both

— “all bets are off’” - nathan (not true: we can combine both)

RTS based solutions can isolate applications from having to
deal with failures

— Somehow, no talk covered this

Overdecomposition based solutions contribute some unique
solutions/enhancements

Checkpoint/restart (charm++ has been supporting fault
detection and automatic restart for 5+ years now)
— Optimized by non-blocking protocols

— Burst buffers?? We can do without for many apps.. Reuse the memory
(make it multi-purpose)

— Many apps have relatively small mem footprint at checkpoint
— These can be combined with SDC detection schemes

But the real fun is message-logging schemes

;“?HI

-

A CcCOou p I e Of fo I k S Overdecomposition

 MPI + X

« “Task Models”
— Asynchrony q NIPI+X

« Overdecomposition: Task
. Models
— Most adaptivity

.
@
=~
=~
F

[| -\‘Ar'_

A Runtime System based on
Over-decomposition and
Migratability
can support resilience effetively

PPL

UIuC

Runtime Systems can play a role

e RTS based solutions to resilience are
desirable
— They insulate the application from failures

— RTS has information about the the machine
status and application status

— Applications can provide information to the RTS

= [l$

Failstop Faults

« Silent Data Corruption is what everyone is
talking about
— It is important
— But failstop faults are not going away
— We need to handle them both

= [l$

Progress Rate is the right metric

« Compared with
— distributed systems theory, or
— a mission to mars, or
— real-time systems

HPC needs are different

— We will accept a small probability of failure
* In that case, we will redo the simulation

— But we care about application making progressin
presence of faults

= [l$

O

I0MOJ

LBNL/LLNL

Power consumption
1S continuous

Normal
Checkpoint-Resart
method

Progress is slowed
down with failures

Fault Tolerance in Charm++/AMPI

 Four approaches available:
— Disk-based checkpoint/restart

— In-local-storage double checkpoint w auto
restart

« Demonstrated on 64k cores
— Proactive object migration

— Message-logging: scalable fault tolerance
« Can tolerate frequent faults

« Parallel restart and potential for handling faults during
recovery

.

[T

o .-
| L8

== pm
T

In-memory checkpointing

Actually: In local-storage double checkpoint, with
automatic failure detection and restart

Is practical for many apps

— Relatively small footprint at checkpoint time

Very fast times...

Demonstration challenge:
— Works fine for clusters

— For MPI-based implementations running at centers:
« Scheduler does not allow job to continue on failure
« Communication layers not fault tolerant

— Fault injection: dieNow(),
— Spare processors

i)

UIuC

e .
[JC

}.Z [

A¥L

(e

.

Time (ms)

Checkpoint Time — Intrepid(leanMD)

5 I I : T
125000 atOms
1 million atoms === p—

45 |

4 guunnnnnntntt @uannsanns :.:i:-“"/.

-— —

35 1

3

4K 8K 16K 32K 64K

#cores

11&

UIuC

HE e
mwa

-

éﬁ’f ;

I [

L]]

Restart Time — Intrepid(leanMD)

0.2 . | | |
125000 atoms ——=—
1 million atoms == ®enn
0.15 -
q) -
g 0.1
-
005
0

4K 8K 16K 32K 64K

#cores

)

UIuC

Checkpoint Time — Jaguar(Jacobi)

Time (s)

I I |

Jacdbi(1 28 MB'/core) e

- . .

1 1 | | 1

HE e
. [’—\\ (-

1 [

1K 2K 4K 8K 16K
#cores

15 PPL

UIuC

Extensions to fault recovery

« Based on the same over-decomposition ideas

— A surprisingly large number of applications have
low memory footprint at checkpoint

— But, if not:

— Use NVRAM instead of DRAM for checkpoints

 Non-blocking variants
« [Cluster 2012] Xiang Ni et al.
— Replica-based soft-and-hard-error handling

« As a “gold-standard” to optimize against
« [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

pm

11 PPL

UIuC

nm—

.-
| L8

Scalable Fault tolerance

« Faults will be frequent at exascale (true??)
— Failstop, and soft failures are both important

 Checkpoint-restart may not scale
— Or will it?

— Requires all nodes to roll back even when just
one fails

 Inefficient: computation and power
— As MTBF goes lower, it becomes infeasible

= [l$

O

15 PPL

UIuC

Message-Logging

e Basic ldea:

— Only the processes/objects on the failed node go
back to the checkpoint!

— Messages are stored by senders during execution
— Periodic checkpoints still maintained

— After a crash, reprocess “resent” messages to regain
state

« Does it help at exascale?
— Not really, or only a bit: Same time for recovery!

« But with over-decomposition,

— work in one processor is divided across multiple
virtual processors; thus, restart can be parallelized

— Virtualization helps fault-free case as well

iy

O

1o PPL

UIuC

TR
e arm
T LT

HE e
| n

}.; =
ui [I—LF"'%I

mE .

- Power consumption
1s lower during

recovery

Message logging +
Object-based
virtualization

Progress 1s faster
with failures

PPL

UIuC

Fail-stop recovery with message logging: A research vision

>

Application progress

15 PPL

U10C

(..
l}l.

CIE
i
L RO

1o PPL
UIuC

Ll

L
min wm
I

» PPL
UIuC

Ll

L
min wm
I

* A fault hits a node

* [t regresses..

 [ts objects start re-execution,
 IN PARALLEL on

neighboring nodes!

(..
l}l.

» PPL

U10C

CIE
i
L RO

* Re-execution continues even as
other nodes continue forward

* Due to “parallel re-execution”
the neighborhood catches up

. PPL

U10C

.
.
TIT

.
i

.

M
[T

T

Back to normal execution

» PPL

UIuc

.

M
[T

T

Another fault

. PPL

UIuc

* Even as its neighborhood 1s
helping recover,

« A 3 fault hits

* Concurrent recovery 1s possible
as long as the two failed nodes
are not checkpoint buddies

» PPL

U10C

.
.
TIT

.
i

» PPL
UIuC

LR

-
l&- am
Em Em

- PPL
UIuC

LR

-
l&- am
Em Em

Q@Hﬂ

. I}l [

Takeaway

Adaptive Runtime System is a good layer to
implement resilience strategies

— Especially with over-decomposition
In-local-memory double checkpoint with
automatic restart works well

If we need to tolerate more frequent failures

— Message logging with parallel restart and
handling of most concurrent failures will do the
job

Need to combine with SDC handling

» PPL

